The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability.
نویسندگان
چکیده
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes.
منابع مشابه
Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons.
Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TT...
متن کاملA novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons.
TTX-resistant (TTX-R) sodium currents are preferentially expressed in small C-type dorsal root ganglion (DRG) neurons, which include nociceptive neurons. Two mRNAs that are predicted to encode TTX-R sodium channels, SNS and NaN, are preferentially expressed in C-type DRG cells. To determine whether there are multiple TTX-R currents in these cells, we used patch-clamp recordings to study sodium ...
متن کاملTwo TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability.
The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Nav)] have been described in small DRG neurons; one with slow inactivation kinetics (Nav1.8) and the other with persistent kinetics (Nav1.9), and their modulation has been implicated in inflammatory pa...
متن کاملBrief Communication Endothelin-1 (ET-1) Selectively Enhances the Activation Gating of Slowly Inactivating Tetrodotoxin-Resistant Sodium Currents in Rat Sensory Neurons: A Mechanism for the Pain-Inducing Actions of ET-1
Endothelin-1 (ET-1) causes pain through activation of nociceptors, by either direct depolarization or increased excitability. Here we examined the effect of ET-1 on nociceptor-associated tetrodotoxin-resistant (TTX-R) sodium currents using wholecell voltage clamp of acutely dissociated rat dorsal root ganglion (DRG) neurons. DRG neurons that responded had enhanced activation gating when exposed...
متن کاملTetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators.
Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 113 2 شماره
صفحات -
تاریخ انتشار 2015